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The secondary instability of large-amplitude Gortler vortices in a growing boundary 
layer is discussed in the fully nonlinear regime. It is shown that the three- 
dimensional breakdown to a flow with wavy vortex boundaries, similar to that which 
occurs in the Taylor vortex problem takes place. However, the instability is confined 
to the thin shear layers which were shown by Hall & Lakin (1988) to trap the region 
of vortex activity. The disturbance eigenfunctions decay exponentially away from 
the centre of these layers, so that the upper and lower shear layers can support 
independent modes of instability. The structure of the instability, in particular its 
location and speed of downstream propagation, is found to be entirely consistent 
with recent experimental results. Furthermore, it is shown that the upper and lower 
layers support wavy vortex instabilities with quite different frequencies. This result 
is again consistent with the available experimental observations. 

1. Introduction 
Our concern is with the nature of the three-dimensional breakdown of steady, 

spanwise periodic large-amplitude Gortler vortices. It is known from the experiments 
of Bippes & Gortler (1972) and Aihara & Koyama (1981) that this breakdown leads 
to a time-periodic flow with wavy vortex boundaries similar to those which occur in 
the Taylor problem. More recently Kohama (1987) has investigated vortex 
instabilities in boundary-layer flows over a laminar flow wing. He found a secondary 
instability of Gortler vortices localized at the top of the region of vortex activity. 
Furthermore, Kohama found that the instability propagated downstream with a 
speed that approached the free-stream speed as it  developed in the downstream 
direction. The onset of this time-dependent motion was found in all of the above 
experiments to be ultimately followed by transition to turbulence. At this stage more 
obvious differences between the Gortler and Taylor problems emerge so that, for 
example, the rich bifurcation structure of the Taylor problem is apparently not 
carried over to the Gortler problem. 

In fact even in the linear regime the apparent similarities between Taylor and 
Gortler vortices are perhaps misleading, since it is known from the work of Hall 
(1982a, b ,  1983, 1984) that non-parallel effects in the Gortler problem cannot in 
general be ignored. Indeed it was shown by Hall (1983) that the inconsistencies of the 
various parallel-flow theories of for example Gortler (1940), Hiimmerlin (1956) and 
later authors are a direct consequence of the parallel-flow approximation. The only 
regime where this difficulty with the parallel-flow theories does not occur is at small 
vortex wavelengths where the effect of boundary-layer growth on the vortices 
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becomes less important. However, the most surprising feature of the non-parallel 
theory of Hall (1983) is that the concept of a unique neutral wave is not tenable in 
the Gortler problem. This is because the downstream position where a vortex begins 
to grow is a function of the location and initial form of the imposed disturbance. A 
more significant consequence of the non-parallel theory is that  the concept of a 
unique growth rate a t  a given downstream location is also not tenable. This result 
makes transition prediction by empirical methods such as the en rule not possible. 
Nevertheless, there is much work still being done in the context of ‘parallel-flow’ 
Gortler vortices. 

The non-uniqueness properties of solutions of the correct zeroth-order approxi- 
mations to the linear Gortler vortex equations were shown by Hall (1988) to 
occur in the corresponding nonlinear problem a t  O(1) wavenumbers. In  the latter 
paper, the development of finite-amplitude Gortler vortices was investigated 
numerically using a finite-difference discretization in the normal and chordwise 
directions together with a Fourier expansion in the spanwise direction. It was found 
that as the vortices move downstream the disturbance energy flow becomes 
concentrated in the fundamental and the mean flow correction. This is entirely 
consistent with the weakly nonlinear theory of Hall (1982 b )  which is appropriate to 
small-wavelength vortices. However, in a growing boundary layer, the ‘local’ 
wavenumber of a fixed-wavelength disturbance grows like the displacement thickness 
of the boundary layer. Thus, in most flows any vortex will eventually enter the small- 
wavelength regime where locally the asymptotic analysis of Hall (1982 a, b )  apply. 

As is the case with all weakly nonlinear stability calculations, the work of Hall 
(1982 b)  is restricted to a neighbourhood of the position where a given disturbance is 
neutrally stable. However, with the boundary-layer thickness as an appropriate 
lengthscale, it  can be inferred from the calculation that a vortex of non-dimensional 
wavenumber e-l, where 0 < E 4 1 ,  reinforces the basic flow a t  zeroth order a t  a 
distance O ( E )  downstream of the neutral point. This result was recently developed by 
Hall & Lakin (1988, hereinafter referred to as HL), to give an asymptotic description 
of fully nonlinear Gortler vortices a t  distances beyond the neutral point comparable 
with the distance from the leading edge. It is the instability of this type of vortex 
that we will investigate in this paper. However, before discussing the nature of this 
instability we need to  point out the salient properties of the HL calculations. 

Consider then a Gortler vortex of wavenumber e-l developing in a boundary-layer 
flow with Gortler number of O ( E - ~ ) .  This choice of small-wavelength vortices is not 
as restrictive as it might first appear since, as explained above, this regime is always 
approached by a fixed-wavelength vortex in a growing boundary layer. Suppose 
further that the flow is neutrally stable a t  the downstream location z = x,, then HL 
showed that for x > x, the flow field splits up as shown in figure 1 .  The vortex 
activity is confined to region I and decays exponentially to zero in the thin shear 
layers IIa, b. In regions IIIa, b there is no vortex activity and the mean flow satisfies 
the boundary-layer equations. However, in region I the mean flow is determined as 
a solvability condition on equations for the fundamental. In  fact, the mean flow 
adjusts itself so as to make the fundamental and all the higher harmonics finite in 1. 
The mean flow equations then determine the vortex velocity field in 1. Thus, there 
is a complete reversal of the usual roles of the mean flow and harmonic equations 
compared to say the situation in flows where nonlinearity can be described by the 
Stuart-Watson method. The shear layers located at y1 and yz change position as they 
move downstream ; their positions are determined from the solution of a double free- 



Three-dimensionality and time-dependence in Gortler vortices 407 

Y 

111 b 

X 

< 9 

O W  
FIGURE 1. The different regions beyond the downstream position of neutral stability. 

boundary problem associated with the boundary layer-equations. However, in flows 
where the local Gortler number increases faster than the fourth power of the local 
wavenumber HL showed that y1 migrates to the wail whilst yz moves to or beyond 
the edge of the boundary layer. The mean downstream velocity components in the 
layers Ha,  b then approach the free-stream speed and zero respectively. This has 
fundamental implications for the time-dependent structure of the breakdown of this 
flow. 

We shall seek secondary instabilities of the flow in layers IIa, b ;  more precisely we 
superimpose spanwise periodic travelling waves on the flow in these layer and see 
how they develop. These perturbations are in radians out of phase with the 
fundamental in the spanwise direction, so that if the secondary instability occurs it 
will produce locally wavy vortex boundaries in IIa, b. It is of course not obvious 
that, should wavy vortices occur, the regions IIa, b should be particularly susceptible 
to these modes. In  order to see why this is the case, we consider the model equation 

together with the condition + + 0, IyI + 00. 

In  fact, this equation essentially governs the nonlinear growth of time-dependent 
Gortler vortices in curved channel flows. Here h is a parameter, t denotes time, x is 
the distance around the channel, and y is the distance from the centre of the internal 
viscous layer where the vortices initially develop. A finite-amplitude solution of (1 .1)  
representing a steady, x-independent vortex $ = $v satisfies 

The instability of this flow to a travelling vortex-like perturbation can be calculated 
by setting 

$ = + " + y ( x , Y , t ) ,  
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where @' is a real function of x, y and t .  If we now look a t  disturbances with 
$' = Re (eikz+"tq5(y)) then we find that #(y) satisfies 

which determines an eigenrelation u = u(k). However if the wave is BIT radians out of 
phase in the spanwise direction with the fundamental vortex then (1.3) becomes 

The latter eigenvalue problem was studied by Shaw (1983) who found that unstable 
modes occur for h = O( 1). (In contrast to  this result (1.3) leads to stable disturbances.) 
Here A plays the role of Gortler number so that increasing h is equivalent to 
increasing x for the boundary-layer problem. Of more relevance to our problem is the 
solution of (1.4) for h 4 1. In this case $v develops a triple-layer structure with a core 
region with @, = (A-h2)+ trapped between shear layers of thickness A-t at  
y = k(4h)t .  These shear layers correspond to IIa, b in the HL calculation. An 
examination of (1.4) in this limit shows that any eigenvalues must now concentrate 
in IIa, 6 because in the core q5 now satisfies 

($-iky-u)$ = 0. 

This is an Airy equation so that q5 + co when y+ co or y+ - 00,  in which case $I is 
exponentially large as one of the shear layers is approached. Hence, matching with 
the corresponding solution in the shear layers cannot be achieved. Thus, any 
disturbances in the model problem must concentrate in the shear layers and decay 
away from the centres of the layers. We do not solve the model problem in the shear 
layers but merely use the above argument to suggest that any disturbances for the 
boundary-layer problem will, if they exist, concentrate in the shear layers. The 
disturbances will be made to  decay exponentially away from the shear layers so that, 
unless exponentially small terms are matched, the layers can be treated in- 
dependently. Furthermore, the number of modes associated with an instability in 
either shear layer is not fixed by a discussion of the model problem. 

The above structure for the model equation is sufficiently close to the boundary- 
layer problem for i t  to be applicable there. Thus, after formulating our instability 
equations in $ 2  we shall in $3  investigate the instability of IIa, b to wavy vortex 
modes. In  $4 we present the results of our calculation and draw some conclusions. 

2. Formulation of the problem 
The flow under consideration is that described by HL. We consider the flow of an 

incompressible, viscous fluid of kinematic viscosity v and density p ,  over a wall of 
variable concave curvature p x ( X / L ) .  Here p-' is a typical radius of curvature, X 
denotes distance along the wall and L is a typical lengthscale along the wall. The 
Reynolds number for the flow, RE, is defined by 



Three-dimensionality and time-dependence in Gortler vortices 409 

where U, is a typical flow velocity. A curvature parameter, a,, is defined by 

8, = pL. (2.2) 
We are interested in the limit RE+ co with the Gortler number G ,  defined by 

G = = t &  E C’ (2.3) 
held fixed. We denote time by T and (X, Y ,  2) are taken to be the coordinates along 
the wall, normal to the wall and in the spanwise direction respectively. If (U,  V ,  W )  
denotes the corresponding velocity vector we define dimensionless coordinates 
(x, y, z )  and velocity (u, v,  w) by 

(x, y ,  Z) = L - ~ x ,  Y R ~ ,  Z R ~ ) ,  

and (u, 8, W )  = U;l(U, V18E, WRE). 
Our analysis is restricted to flows with u+ 1 when y +  CQ and the pressure P is 
written in the form u2 P = p o p .  

R E  

a% av aw 
ax ay a Z  

The continuity equation and non-dimensional unsteady Navier-Stokes equations 

-+-+- = 0, ( 2 . 4 ~ )  
for the flow take the form 

(2.4b) 

( 2 . 4 ~ )  

(2.4d) 

Here the non-dimensional time variable t is given by t = U, L-lT, and terms of order 
Rj$ have been neglected. HI; obtained a steady solution of (2.4) which satisfies 

(2.5a, b )  u = v = w = 0, y = 0, 
u + l ,  y+oo. 

This was an asymptotic solution valid in the limit of small vortex wavelength. The 
Gortler number G, defined in (2.3), is expanded in the form 

G = G , E - * + G ~ E - ~ + . . . ,  (2-6) 
where e-l is the non-dimensional wavenumber of the vortices. In the main part of the 
boundary layer a(x, y), the zeroth-order, z-independent part of the downstream 
velocity component satisfies aa 

aY 
G ti-==. o x  

This reflects the fact that here the mean flow is driven by finite-amplitude vortices. 
Here the effect of the vortices is to produce a mean flow correction the same size as 
the basic flow. Thus, the mean flow bears no resemblance to the flow that occurs 
when no vortices are present. The velocity field of the (smaller) vortices is then found 
by considering the z-independent part of the equations of motion in I. This 
calculation shows that the vortices are trapped between y1 and y z  and formally decay 



410 P. Hall and S .  Seddougui 

to zero exponentially in IIa, b.It  is found that the region I of vortex activity grows 
as the flow develops, eventually occupying the extent of the original boundary layer. 
Above y2 and below y1 there is no z-dependence to the flow and it is obtained by 
solving the boundary-layer equations with jump conditions a t  yl, y2. The shear layers 
H a ,  6 correspond to the A t  layers for the model problem and we now examine the 
flow structure in Ila. In  fact our analysis is equally applicable to region I16 so our 
theory determines the stability of both shear layers which trap the vortices. In order 
to investigate the instability of the boundary layer in this region we consider 
perturbations to the steady, basic flow satisfying (2.4) and (2.5) in region IIa. 

3. The asymptotic structure of the wavy modes 
It was shown by HL that  layers IIa, b are of thickness cg so that in Ila we write 

where yz(x) is the location of the layer IIa. The vortex activity of the steady flow is 
confined to the region I between the shear layers IIa,b. The algebraically decaying 
vortices in region I are reduced to zero exponentially in the shear layers. Above yz 
and below y1 the basic flow satisfies the boundary-layer equations. Thus, in IIa we 
replace a/ax by a Y ; a  

ax t a g  
---- 

and slay by i a  
B a[ ' 
-- 

The basic, steady expansions in IIa, satisfying (2.4) and (2 .5) ,  are given by equation 
(3.10) in HI, and can be written in the form 

u = u g  = E o + € % , +  ...+ (u,,+s~u,,+ . . . )  

( U 0 2 + € ~ U , , +  ...)+ . . . )  (3.la) 

v = vg = $0 + f%V=,+ . . . + ( + d & 1 +  . . .) 

(T&+c;V12+ . . . )+  ..., (3.16) 

(w,,,+~;w,,+ . . .)+ ..., ( 3 . 1 ~ )  

+€- -SCOS (7) - (Poz+€;P12+ ...)+ .. . ,  (3 .14  

where the coefficients are functions of x and 5. In  fact Go is just the value of the mean 
streamwise velocity component in the shear layer and so is independent of 6. Note 
that the coefficients Ujk,  vk, y.k,qk in the above formulation correspond to 2Ujk, 2Qk, 
2iT.k, 25, respectively, 3 = 0,1 ,2 , .  . ., k = 1 , 2 , 3 . .  . ., in the formulation of HL. The 
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equations obtained from substitution of the basic expansions (3.1) into the continuity 
and Navier-Stokes equations (2.4) and equating coefficients of like powers of e are 
given in detail by HL. It is useful here to note that from (3.12) of HL 

6 
(Go x): (a + 2y2)i' 

u1 = 

The equation which determines GI, obtained from (3.1b), is 

where 

and g2(x) = g(Go x): (U + 2y2)f.  

( 3 . 2 ~ )  

(3.26) 

(3.3) 

( 3 . 4 4  

(3.4b) 

Heref(x) is a function that can only be determined at higher o n a ,  a(%) an1 b(x) are. 
arbitrary functions of x arising from the solution in region I (see (3.7) in HL), and a 
prime denotes a derivative with respect to x. 

Since the solution of (3.3) is required in the later analysis, we shall give a 
description of it here. In order to eliminate f(x) from (3.3) we introduce the variable 
5, and let 

(3.5) g = t  --, 92f 
1 

91 
so that (3.3) becomes 

=+g& a2vCi1 v,1= 8Cl. 

In order to simplify (3.6) further we make the transformations 

7 = (-91)"1, 

and v,, = d6(-91)%(7), 
with the result that (3.6) becomes 

Note that gl(x), defined by ( 3 . 4 ~ )  is less than zero for all values of x. As noted by HL, 
(3.9) is a particular form of the second Painleve transcendent. It has been shown by 
Hastings & Mcleod (1978) that (3.9) has a solution such that 

and 

( 3 . 1 0 ~ )  

(3.10b) 

A solution for El was obtained numerically by using (3.10) and starting integrating 
at  7 = + in the direction of decreasing 7 using a fourth-order Runge-Kutta 
scheme. These results are used in the following analysis. 

The results of Davey, DiPrima & Stuart (1968) show that the Taylor vortex flow 
is unstable against perturbations differing in phase from the fundamental component 

14 FLM 204 
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of the steady vortex flow by in. After instability, the new flow has wavy surfaces 
travelling in the azimuth separating neighbouring vortices. This suggests that, since 
we are seeking a secondary instability that will produce locally wavy vortex 
boundaries in IIa, b, we must consider a time-dependent perturbation to the basic 
flow in IIa, b which is in radians out-of-phase in the spanwise direction with the basic 
flow in IIa, b. 

We have also considered the case of an in-phase perturbation and found the 
resulting problem more complicated than the present one. We anticipate that there 
are no unstable solutions for this case and just proceed with the present situation. 

Hence, we seek solutions with out-of-phase perturbations proportional to 

(3.11) 

Here the wavenumber K expands as 

K = K o + € i l +  ..., (3.12) 

and 51 is the constant frequency. It has of course been assumed that the wavy vortex 
mode is a short-wavelength high-frequency mode. This is necessary in order that this 
mode of secondary instability is trapped in the shear layers. We see later that this 
assumption is consistent with experimental observations. The lengthscale and 
timescale in (3.11) are chosen, from Hall (1982a), so that a2/az2 - and 
a/at+ua/az = 0 in the shear layer. The latter scaling ensures that the waves 
travel downstream with the speed of the fluid in the shear layer. 

We find that the appropriate expansions in IIa take the form 

E(uOl+e~ul1+ ...)+... (3.13 a) 

I C ( ~ ~ ~  +ehl1 + . . .) + . . . (3.13b) 

2o = wB + { 6 (6-i cos ( E) ~ ( w , ,  + e$wl1 + . . . 
(3 .13~)  

E(pOl+dpl1+ ...)+... (3.13 d) 

where S is a small amplitude and C.C. denotes complex conjugate. Note that there are 
only mean flow (independent of z )  correction terms occurring in the expansion for w. 
This is a result of the perturbation being in radians out of phase with the 
fundamental vortex. For the case of an in-phase perturbation, mean flow correction 
terms also occur in the corresponding expansions for u, v ,  and p and the resulting 
eigenvalue problem is more complex. 

The coefficients are functions of z and E and are determined by substitution of 
the expansions (3.13) into the unsteady equations of motion (2.4). The zeroth- 
order equations, obtained from equating coefficients of 6sin ( z / B )  E in (2.4a-c) and 
Scos(z/e)E in (2.4d), are 

wo1 = 0, ( 3 . 1 4 ~ )  -- avo1 
36 - 

- iQuOl + iKo Go uol + wol - 
86 - uo1, (3.14b) 
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- iQwol + iKo 4, vol = - Go xa0 uol - vol, 

413 

(3 .14~)  

0 = -Po,-wo,. (3.14d) 

Consistency of (3.14b, c) requires that 

Q = KoGo. (3.15) 

This shows that the waves move downstream with mean speed Zo, i.e. the speed of 
the mean part of the basic flow in IIa. Thus (3.14) reduces to  

az -- avo1 
a15 a6 

wol = 0, U O l + - l V O 1  = 0, wol+pol = 0. (3.16 a+) 

Thus, once vol, is obtained, equations (3.16) determine wol, uol, and pol .  (Note from 
(3.2) that G o ~ d o a u l / a ~  = 1). From equating coefficients of Gsinz/cE in (2.4b, c )  at 
the next order we obtain the equations 

i K 0  G ~ u O ~ +  iKl Go ~ 0 1  + > V l l  % +>vol aa - wm0 Uol = v - u l 1 ,  auo1 (3.17a) a t  36 

i K o ~ l ~ o , + i K , ~ o ~ O 1 - ~ m O J $ l = - G  t7 u -G aiiu - --+-- aP01 azv01 

ag a p  'll. 
o x  0 11 o x  1 0 1  

(3.17 b )  

We substitute for v,, from ( 3 . 1 7 ~ )  into (3.17b) and use the solutions for go and a1 
given by (3.2) to  obtain 

Hence, in order to  obtain a solution for wol we require solutions for wmo and the 
solution obtained from (3.3) for J$,. I n  order to determine wmo we equate coefficients 
of SE in (2.4d). The resulting equation is 

(3.19) 

On substitution of a2vol/at2 and a2&l/i3[2 from (3.18) and (3.3) respectively into (3.19) 
we obtain 

a2wmo iQ[ iK1(a+ 2y2p 
wrno = - h n o  El 

(Go 
WrnO - 

a 6 2  a + 2y2 

Thus, i t  remains to  solve the coupled equations (3.18) and (3.20) with the boundary 
conditions 

v O 1 , ~ m o + O  as[+&oo. (3.21) 

If we look for a solution with K ,  of the form 

(3.22) 

14-2 
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then, using the transformation (3.5), equations (3.18) and (3.20) become, respectively, 

For a fixed, real value of 52 we can solve (3.23) and (3.24) and determine the 
complex function I?,(%) as 5 moves downstream. However, we are interested in 
neutrally stable solutions so we seek real values of 52 and I?,(%). We can eliminate the 
z-dependence from the coefficients in (3.23) and (3.24) by making the transformations 

VOl = (-gl)-~cOl(7), (3.25) 

(3.26) 

and 52 = 8(-g1) (a+2y2) .  (3.27) 

Now we can find the constants I?, and b so that the flow is neutrally stable at the 
location x where and 52 satisfy (3.26) and (3.27). Hence, with the transformations 
(3.7), (3.25), (3.26) and (3.27), equations (3.23) and (3.24) become, respectively, 

-- ( l + ~ i ~ ) ~ v o l - ~ l c o l  = ~ , t J O l - ~ 1 / S  wmo 
dT2 

- 
( 3 . 2 8 ~ )  

d2vol 

d2Wm0 - 
-- i s Z ~ w m o - ~ l w m o  = -2wmo ~ ~ + $ 4 6 i 8 7 ~ 1 ~ 0 1 + $ l / 6 i k 1  K,Vol .  (3.288) 

dV2 
We seek solutions of (3.28), with ri', and 8 real, satisfying 

vol,wmo+O as7-t +a. 
As 9 -+ + 03 (3.28) can be written as 

(3.29) 

d2vol 1 

-- ( l + ~ i 5 2 ) ~ ~ o l - ~ i K l c o l  = 0, (3.30 a )  
dT2 

and d2wmo - 1 -- iS2ywmo-iKl wmo = 0. 
dy2 

(3.30b) 

Hence, as 7 --f + OD we can find two independent solutions for vol and wmo, in terms 
of the Airy function Ai, which satisfy (3.29). When rj + - 03 the equations for vOl and 
wmo are 

(3.31 a) 

-- d2wmo ( i f i+2)7wm0-~1wm0 = ~ 4 6 i f i ~ ( - 4 ) ~ v 0 1 + ~ 2 / 6 ~ 1 ~ 0 1 ( - 7 ) ~ .  (3.31b) 
dY2 

The appropriate expansions of (3.31) now take the form 

VOl = exp [ - $ITPI [cola + * ' *I,  
wmo = I T I ~ ~ x P  [-$ITPI Iwmoo + .. *I*  
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Here $ satisfies 243$4 + 36$*(6 + 5i8) - 328 = 0, 

and we take the two roots of this equation with positive real part to generate two 
independent solutions of (3.31) with vOl, wmo+O, q -+ - co. 

These asymptotic solutions for Vo1 and wmo at 7 = &- 00 were used as initial values 
in the numerical integration scheme used to solve (3.28). Equations (3.28) were 
written as a system of four first-order differential equations. This system was solved 
using a standard fourth-order Runge-Kutta integration scheme. The integration 
procedure was started at  q = - 00 and q = + co and continued to g = 0, finding two 
independent solutions for Fol and wmo from each direction. At  7 = 0 the continuity of 
a linear combination of the independent solutions from each direction produces an 
eigenvalue problem for kl and 52. We used a-Newton-Raphson iteration scheme for 
two variables to find real values for I?, and 52. Using the above scheme solutions for 
K, 8, vOl and wmo were obtained but we postpone the discussion of these results until 
the next section. 

Having found 8 and I?, the dimensionless frequency and wavenumber, 52 and K 
respectively, can only be found once the HL calculation has been performed for a 
particular curvature distribution ~ ( x ) .  However, HL gave asymptotic solutions of 
the free-boundary problem for x close to the linear neutral position, x = x*, and for 
x a long way downstream of that position for curvature distributions which increase 
as quickly as d for x % 1.  

First, we recall that when x -+ x,* the shear layers coalesce. Thus if we denote by 
QT and 51, the frequencies of the wavy vortex modes neutral in the upper and lower 
layers at x, it follows that 

%1, x+x:. (3.32) 

Next suppose that x - #,M > t for large x. Then the asymptotic forms for a, y,, 
y z  and b in this case are all given in HL. We find that g,, and glL, the values of gl, 
are given by 

415 
2 

52, 

glT L&xM-lGO~ g l L  276, M2 X3M-2 (3.33) 

(We note here in passing that g1 in the lower layer is positive.) Thus for x B 1 we 
obtain 0, - @$&2M-1G2 0 ,  %-id, 

or 

It follows that as x increaaes, the frequency of the upper-layer mode which is neutral 
at  x increases whilst that of the lower layer tends to a constant value. Thus we can 
distinguish between the modes as being of high and low frequency respectively ; this 
result is entirely consistent with the experimental results discussed in the next 
section. 

4. Results and discussion 

the region I?, > 0, 8 > 0. The only eigenvalues located were 
The numerical scheme outlined above was used to search for eigenvalues (I?,, 8) in 

(&, fi) = (4.156,0.742). (4.1) 
It is possible that other eigenvalues exist a t  higher values of $,,8 since for 
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lKJ, Id1 > 0 a detailed eigenvalue search was not carried out. When d is zero the 
wavy modes are stable. Thus when fi is increased the mode described by (4.1) is more 
dangerous than any higher modes because it will occur first. However, a t  higher 
values of d when all modes are unstable i t  is not clear which mode will have the 
biggest growth rate. Thus, we cannot say which will be the most dangerous mode. 
For any particular incoming boundary-layer profile the frequency 8 and wave- 
number K = K,+&K1 are then calculated from (3.12), (3.15), (3.22), (3.26), (3.27) 
and (4.1). This can only be done once the HL calculation has been carried out. The 
frequency and wavenumber obtained in this way will of course be dependent on x. 
The resulting expressions for 8 and K should be interpreted as the frequency and 
wavenumber that are neutrally stable at x. Alternatively, for a given frequency 8, 
we could invert the equation 8 = 8 ( x ,  €), 

to find the downstream location where the wavy vortex is neutrally stable. If 8 is 
held fixed at the neutral value at x = z then the wavenumber K becomes complex for 
x + I. Then the wavy vortex mode undergoes spatial amplification or decay away 
from the neutral location. 

We do not repeat the HI, calculation in order to obtain specific values for K ,  8 for 
a particular boundary-layer flow. We believe that the major result of this paper is 
that the large-amplitude states of HL are unstable in the thin shear layers that  trap 
the vortices. The only available experimental results that  give detailed results on the 
wavy mode structure do not give sufficient detail about the unperturbed boundary 
layer to enable us to calculate the relevant values of K and 8. Hence, below we 
discuss only the qualitative agreement between our theory and these experimental 
results. However, before we compare our results with experiments, we shall first 
describe the eigenfunctions appropriate to  (4.1). 

These functions are shown in figures 2, 3 and we point out their oscillatory nature 
for negative values of 7. We note that 7+ -a corresponds to moving from IIa, b 
into the core region I. It is of course possible that other ‘lower-order’ modes with a 
less oscillatory nature might exist but, as stated already, only those corresponding 
to  (4.1) were found. I n  figure 4 we show the boundaries of the vortices in the shear 
layers IIa, b from above the region of vortex activity for the undisturbed flow and 
the wavy vortex modes. 

Now let us turn to the physical implications and experimental relevance of our 
calculation. We first stress that  the instability mechanism which we have described 
in detail for just the upper shear layer can also occur in the lower layer. If 
exponentially small terms are neglected, the modes of instability of the shear layers 
are independent because they decay exponentially away from the centre of the 
layers. However, the matching could in principle be carried out to show that an O( 1) 
disturbance in either layer would excite an exponentially small response in the other 
layer. Thus if we consider the frequency of the imposed wavy mode to  be fixed, then 
the layers will break down in the manner described a t  different downstream 
locations. Since the downstream velocity component of the basic state is largest in 
the upper shear layer it is to be expected that this layer will be the first to become 
unstable. This follows from the zeroth-order eigenrelation (3.15) on the assumption 
that 8 is fixed and 8, in IIa is bigger than 8, in I I b .  Furthermore, since the 
wavenumbers K ( x )  appropriate to a fixed-frequency disturbances will be different, 
the modes propagate downstream with different wavespeeds. In  fact initially, by 
which we mean close to the linear neutral position, the layers I I a ,  b coalesce. Thus, 
if breakdown occurs close to  this point then the structure in these layers will be very 
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FIQURE 3. The neutral eigenfunctions wmo for (I?,,@ = (4.156,0.742) plotted against 7: 

(a) Re (Wmo), ( b )  Im (%o).  

similar. Further downstream the upper layer moves into the free stream and the 
downstream velocity component tends to the free-stream speed. The lower layer 
however approaches the boundary so that the fluid velocity there tends to zero. 
Thus, it  follows that if the stationary Gortler vortices develop over a sufficiently long 
interval before breakdown then the upper-layer wavy mode moves downstream with 
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(a) 

Speed = Go - 
(b) 

FIGURE 4. A section of the plan view of the boundaries separating neighhouring Gortler vortices 
in the shear layers IIa, b. The arrows show the direction of rotation of each vortex. (a) The fully 
developed undisturbed state. ( b )  The wavy vortex modes. 

the free-stream speed whilst the lower one has a much smaller propagation speed. It 
is interesting to note that in the apparently closely related Taylor vortex problem the 
corresponding breakdown is due to  a single wavy mode whose presence is felt 
throughout the flow. 

There have been many experimental investigations of the secondary instability of 
Gortler vortices; the reader is referred to the papers by, for example, Bippes & 
Gortler (1972), Wortmann (1969), and Bippes (1978). These authors described the 
secondary mode as being locally periodic in x and t .  However more recently Kohama 
(1987) and Peerhossaini & Wesfreid (1988) have given more details of the flow 
structure that exists when breakdown occurs. We first discuss the results of 
Peerhossaini & Wesfreid. 

The boundary layer investigated by these authors was in the concave section of a 
curved channel. They found that when the secondary mode first appeared it was 
confined to a region at  the top of the vortices. We interpret this as being due to the 
instability mechanism we have described being first operational in region Ila. 
Further downstream they reported a similar instability but this was localized near 
the wall. We interpret this instability as being due to the wavy vortex instability of 
region I1 b.  Both instabilities observed by Peerhossaini & Wesfreid had wavy vortex 
boundaries in the downstream direction, this is entirely consistent with the 
breakdown mechanism we have described in $3. 

The experiments of Kohama were performed on the NASA laminar flow wing 
discussed by, for example, Pfenninger, Reed & Dagenhart (1980). Kohama described 
only the breakdown in the upper part of the boundary layer but gave measurements 
of the wavespeeds a t  different downstream locations. In  the laminar flow region of 
the wing the wavespeed was found to be about 0.45 of the free-stream speed. This 
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factor became about 0.99 when the flow was fully turbulent. Such a variation of 
wavespeed is predicted qualitatively by our theory since the layer IIa migrates from 
being somewhere in the middle of the boundary layer (more precisely at the position 
where Rayleigh’s criterion for the pre-Gortler flow is most violated) to the edge as the 
vortices become fully nonlinear. The migration of this layer, we believe, accounts for 
the variation of wavespeed given by Kohama. 

Finally we note that there are other instability mechanisms that could account for 
the appearance of three-dimensionality and time-dependence in the later stages of 
Gortler vortex development. The most likely other types of disturbances would be 
Rayleigh instabilities associated with the spanwise locally inflexional velocity 
profiles which certainly develop as the vortices develop in a steady manner. 
Secondly, there exists the possibility that Tollmien-Schlichting waves might cause 
the flow to become three-dimensional. However, it  is not clear that these modes 
would lead to the wavy vortex boundaries which seem to be always observed when 
breakdown occurs. Nevertheless, i t  is likely that in some situations the Rayleigh and 
Tollmein-Schlichting modes might be important in the later stages of the transition 
process. 

The authors would like to express their thanks to Dr A. P. Bassom for indicating 
an error in the original version of this work. The work was carried out while the 
second author was in receipt of an SERC research studentship. This research was 
supported under the National Aeronautics and Space Administration under NASA 
Contract No. NAS1-18107 while the authors were in residence a t  the Institute for 
Computer Applications in Science and Engineering (ICASE), NASA Langley 
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